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THREE GOALS

# 1: Inferring network structure from
observed data

#2: Generating random graphs which are
statistically similar to real ones

#3: Predicting missing links



TWO EXTREMES

e Proving theorems about simple models
o Captures some aspect of network structure,
* But leaves lots of other structure out.
e Observing patterns in real networks
o Good “natural history”
* But often ad-hoc.
e One possible bridge: Machine Learning.



CLUSTERING: ONE LEVEL
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HIERARCHY: MANY LEVELS
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A PROBABILISTIC MODEL
(WITH LOTS OF PARAMETERS!)

e Abinary tree T: leaves are original vertices,
internal nodes represent communities

e Each internal node has a proba

oility p;

e Two vertices are connected wit!

n probability

p; where i is their lowest common ancestor

e Allows assortative or disassortative structure,
Or any mix across scales and subtrees



A PROBABILISTIC MODEL
(WITH LOTS OF PARAMETERS!)
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MAXIMUM LIKELIHOOD

e For each internal node i,

e [;and R; = # descendants
e E;,=# edges between them

e Likelihood these edges exist,
and not others, is

£; = pPe(1 — p) M




MAXIMUM LIKELIHOOD

e Each £;is maximized by p; = E;/L; R;
e The likelihood of the entire tree is then

Hene s B e
o The log-likelihood is

In £(T) = — )  L; R h(Ei/LiR;)

Lhere il = pinp - (1 pliln Al o)



MAXIMUM LIKELIHOOD




A MARKOV CHAIN

e We update the tree T with rotations:

{A AR A
AN AN AN

e We move with probability 1if Aln L > 0
and probability exp(A In £) otherwise



SOME NICE PROPERTIES

e Easy to calculate Aln L : just “local” terms

e Moves entire chunks of the tree, while
keeping their internal structure the same

e Allows us to sample trees with probability
proportional to L, instead of just the one
with max likelihood (helps avoid overfitting)
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log-likelihood

EXPERIMENTS
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CONSENSUS DENDROGRAMS

e [et's sample many trees instead of one.

e From phylogeny construction: combine
these into a consensus hierarchy, which
includes the (weighted) majority of splits

e More appropriate than any single tree
(even the most likely one)



CONSENSUS DENDROGRAM:
KARATE CLUB
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SAMPLING THE DISTRIBUTION

 Again, sample many trees instead of one.

e Calculate the (weighted) average probability
that two vertices are connected, or that a
vertex is part of a given community.

e Lets us classify how strongly a vertex is part
of a group, or how “surprising” an edge is.



AVERAGE PROBABILITY OF
EDGES AND VERTICES




CONSENSUS DENDROGRAM:
NCAA
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AVERAGE PROBABILITY OF
EDGES AND VERTICES
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GOAL #2: GENERATING
SIMILAR RANDOM GRAPHS

e Jdea: once we infer a hierarchical structure
(or a distribution of them) we can use it to
generate new random graphs.

e [f these graphs are “similar” to the original
(n.b.: application-dependent!) then we may
have captured part of its structure.
Generalizing from a single example!

e If they aren’t, we have falsified our model,
which is a good thing to be able to do...
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INFERRED HIERARCHY
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RESAMPLING THE ENSEMBLE:
DEGREE DISTRIBUTION
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RESAMPLING THE ENSEMBLE:
DISTANCE DISTRIBUTION
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GOAL #3: LINK PREDICTION

e For many networks, edges are discovered
one at a time, using difficult work in the
field or laboratory

e Given the edges observed so far, can we
predict missing ones better than chance?

e |f so, we can focus our attention on pairs of
vertices likely to be connected.



OUR APPROACH

Sample hierarchies using observed edges

Sort remaining pairs according to the
average probability they are connected

Predict the top few of these

Cross-validation: remove some fraction of
edges randomly, and try to re-predict the
ones you removed



SOME SIMPLER METHODS

“Link Prediction” problem [Liben-Nowell and
Kleinberg, 2003: predicting collaborations]

Guess that two vertices are connected if:

¢ They have many common neighbors

e They share a large fraction of their neighbors
(Jaccard coefficient)

—

_.1“

['he product of their degrees is large

—

_1“

[hey have many short paths between them




OTHER METHODS: METABOLIC

T. pallidum metabolic network
200 = O - Transitive closure (1)
Transitive closure (2)
Degree homophily
| = P = Small-world phenom.
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OTHER METHODS: BAD GUYS

Terrorist network
200 | = O = Transitive closure (1) B
Transitive closure (2)
Degree homophily ,
| = P= Small-world phenom. .
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OTHER METHODS: FOOD WEB

Grassland species network

200 = O - Transitive closure (1) .
Transitive closure (2)
Degree homophily

| = P = Small-world phenom.
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DISASSORTATIVITY:




CONCLUSION

We have a rich space of hierarchical random
graph models, not just assortative

We use a Markov chain to sample the likely
models from this space based on data

This lets us generate random graphs which
are statistically similar to an observed one

[t also lets us predict missing links with
probability much better than chance.



SHAMELESS PLUG

L WVEHLL'ME 1IN THIE
AMTA FE INSTITUTE STUDIES IN THE SCIENCES OF COMPLEXITY




SHAMELESS PLUG
The Nature of Computation

A VIHLLUME I THIE
SANTA FE INSTITUTE STURIES 1IN THE SCIEMNCES OF COMPLEXTTY

Mertens and Moore




ACKNOWLEDGMENTS

|




